3.1125 \(\int \frac {(a+b x^2+c x^4)^p}{x^2} \, dx\)

Optimal. Leaf size=136 \[ -\frac {\left (\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1\right )^{-p} \left (\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^2+c x^4\right )^p F_1\left (-\frac {1}{2};-p,-p;\frac {1}{2};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{x} \]

[Out]

-(c*x^4+b*x^2+a)^p*AppellF1(-1/2,-p,-p,1/2,-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))/x/
((1+2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^p)/((1+2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^p)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1141, 510} \[ -\frac {\left (\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1\right )^{-p} \left (\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^2+c x^4\right )^p F_1\left (-\frac {1}{2};-p,-p;\frac {1}{2};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{x} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2 + c*x^4)^p/x^2,x]

[Out]

-(((a + b*x^2 + c*x^4)^p*AppellF1[-1/2, -p, -p, 1/2, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[
b^2 - 4*a*c])])/(x*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p))

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2+c x^4\right )^p}{x^2} \, dx &=\left (\left (1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^{-p} \left (a+b x^2+c x^4\right )^p\right ) \int \frac {\left (1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^p \left (1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^p}{x^2} \, dx\\ &=-\frac {\left (1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^{-p} \left (a+b x^2+c x^4\right )^p F_1\left (-\frac {1}{2};-p,-p;\frac {1}{2};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 164, normalized size = 1.21 \[ -\frac {\left (\frac {-\sqrt {b^2-4 a c}+b+2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (\frac {\sqrt {b^2-4 a c}+b+2 c x^2}{\sqrt {b^2-4 a c}+b}\right )^{-p} \left (a+b x^2+c x^4\right )^p F_1\left (-\frac {1}{2};-p,-p;\frac {1}{2};-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}},\frac {2 c x^2}{\sqrt {b^2-4 a c}-b}\right )}{x} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^2 + c*x^4)^p/x^2,x]

[Out]

-(((a + b*x^2 + c*x^4)^p*AppellF1[-1/2, -p, -p, 1/2, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[
b^2 - 4*a*c])])/(x*((b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]))^p*((b + Sqrt[b^2 - 4*a*c] + 2*c
*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p))

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (c x^{4} + b x^{2} + a\right )}^{p}}{x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^p/x^2,x, algorithm="fricas")

[Out]

integral((c*x^4 + b*x^2 + a)^p/x^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c x^{4} + b x^{2} + a\right )}^{p}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^p/x^2,x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2 + a)^p/x^2, x)

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 \[ \int \frac {\left (c \,x^{4}+b \,x^{2}+a \right )^{p}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^p/x^2,x)

[Out]

int((c*x^4+b*x^2+a)^p/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c x^{4} + b x^{2} + a\right )}^{p}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^p/x^2,x, algorithm="maxima")

[Out]

integrate((c*x^4 + b*x^2 + a)^p/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,x^4+b\,x^2+a\right )}^p}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2 + c*x^4)^p/x^2,x)

[Out]

int((a + b*x^2 + c*x^4)^p/x^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**p/x**2,x)

[Out]

Timed out

________________________________________________________________________________________